- REPORT DOCUMENTATION PAG Public reporting burden for this collection of information is estimated to average 1 hour per response, inclus maintaining the data needed, and completing and reviewing the collection of information. Send comments regal for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. AD-A252 007 | (| 2 | |----------|----------| | ring and | - | nering and uggestions 302, and to | 1. Agency Use Only (Leave blank). | 2. Report Date.
1992 | | and Dates Covered.
ractor Report | | |---|---|--|--|--| | 4. Title and Subtitle.
Artificial Corrosion of Cu-alloys - A
and Nonmicrobial Sulfide Corrosio | | anding Microbial | 5. Funding Numb
Contract
Program Element | N00014-90-J-6010
No.0601153N | | 6. Author(s).
Dr. Terri L. Woods* | T E | DTIC
ELECTE | Project No. Task No. Accession No. Work Unit No. | 00101
109
DN250162
93330F | | 7. Performing Organization Name(s) at *East Carolina University Greenville, N.C. 27858-4353 | nd Address(es). | C 3 1992 | 8. Performing Or
Report Number | | | 9. Sponsoring/Monitoring Agency Nar | | | 10. Sponsoring: | Monitoring Agency | | Naval Oceanographic and Atmosp
Ocean Science Directorate
Stennis Space Center, MS 39529 | | tory | CR 022:92 | | | 11. Supplementary Notes. 12a. Distribution/Availability Statement Approved for public release; distri | nt.
bution is unlimited. | | 92- | -16272 | | 13. Abstract (Maximum 200 words). | | | | | | 90 Cu-10Ni wafers were corrode O ₂ , and dissolved sulfide. The sar chemistry. The Eh, pH, and the coremoval, the corroded wafers were of chalcocite, paratcamite, cuprite corrosion films varied with solution nickel behaved very differently durapid scavenging of dissolved sulfinto large, well-formed Cu-S miner become quite oxidizing. | mples were not disturbed incentrations of dissolve analyzed by SEM, EDX, aragonite, and possible in chemistry from those thring the experiments. The lide by copper to form an armonic incentration are the second and the second armonic incentration are the second armonic incentration are second armonic incentration. | d during the corrosion prod O_2 and sulfide in the in XPS , and electron microsedjurleite and digenite or that were nonadherent to be data suggest a modelin amorphous or cryptocy | rocess by stirring or mor
nitial and final solutions we
oprobe. These analyses in
the surfaces of the waf
o those showing good ad
for this abiotic corrosion
ystalline Cu-S phase wh | nitoring of the solution
were measured. Upon
revealed the presence
ers. Adherence of the
therence. Copper and
process that involves
ich later recrystallizes | Unclassified NSN 7540-01-280-5500 of Report. 17. Security Classification 14. Subject Terms. Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102 20. Limitation of Abstract. 15. Number of Pages. 37 SAR 19. Security Classification of Abstract. Unclassified 16. Price Code. 18. Security Classification of This Page. Unclassified Biofouling, corrosion, biodeterioration, electrochemistry Final Report for Research Conducted under Contract # N00014-90-J-6010 Department of the Navy Naval Oceanographic and Atmospheric Research Laboratory Code 102:RDS Stennis Space Center, MS 39529-5004 Artificial Corrosion of Cu-alloys A contribution to Understanding Microbial and Nonmicrobial Sulfide Corrosion Dr. Terri L. Woods East Carolina University Department of Geology Greenville, NC 27858-4353 ## ABSTRACT 90Cu-10Ni wafers were corroded abiotically in synthetic seawater solutions containing various concentrations of H+, dissolved O2, and dissolved sulfide. The samples were not disturbed during the corrosion process by stirring or monitoring of the solution chemistry. The Eh, pH, and the concentrations of dissolved $\rm O_2$ and sulfide in the initial and final solutions were measured. Upon removal, the corroded wafers were analyzed by SEM, EDX, XPS, and electron micro-These analyses revealed the presence of chalcocite, paratacamite, cuprite, aragonite, and possibly djurleite and digenite on the surfaces of the wafers. Adherence of the corrosion films varied with solution chemistry from those that were nonadherent to those showing good adherence. Copper and nickel behaved very differently during the experiments. The data suggest a model for this abiotic corrosion process that involves rapid scavenging of dissolved sulfide by copper to form an amorphous or cryptocrystalline Cu-S phase which later recrystallizes into large, well-formed Cu-S minerals. The Cu-S minerals initially formed under reducing conditions persisted even after the solutions became quite oxidizing. ## INTRODUCTION Exposure of metal alloys to seawater containing excessive concentrations of sulfide can cause accelerated corrosion. ¹ Unusually high concentrations of reduced sulfide species result from pollution of harbor waters by city sewage outfalls, industrial waste discharge, rotting vegetation, and from the activity of sulfate-reducing bacteria (SRB). Such accelerated corrosion of copper piping on vessels can eventually lead to premature failure.²⁻⁴ Many researchers have studied the effects of pH and oxygen and sulfide concentrations on corrosion rates of copper alloys in natural and synthetic seawaters. Eiselstein et al. established that the presence of both sulfide and oxygen in seawater results in very high corrosion rates. Even in the complete absence of oxygen, however, the presence of sulfide in seawater leads to an increase in corrosion rates. Copper-sulfide films formed in oxygenated, sulfide-polluted seawater do not provide protection against further corrosion. Previous studies ^{1,4} have suggested that the formation of a porous copper - sulfide film inhibits the natural growth of a protective cuprous oxide film. Also, Syrett ³ suggests that a film of heterogeneous mineralogy, no matter how adherent, may be porous enough to permit corroding ions to pass through to the copper alloy. Chalcocite has been identified as a non-protective corrosion product ⁷, whereas, djurleite, may produce a protective film. ⁸ Sulfate-reducing bacteria may accelerate corrosion of alloys, and formation of many sulfide films may require SRB. 10-13 In most instances SRB are the most important source of reduced sulfur species. 10 Sulfate-reducing bacteria, use sulfates to produce HS, H₂S, polysulfides (SS², S₂S², S₃S², and S₄S²), minor concentrations of S², and colloidal sulfur. These reduced sulfur species enhance conversion of native copper to copper-sulfide minerals. 14 Baas-Becking and Moore 13 have produced digenite, chalcocite and covellite by SRB-induced corrosion of copper. North and MacLeod 11 report the occurrence of chalcocite, covellite, digenite, djurleite and anilite on copper artifacts submerged in seawaters containing SRB. More recently, McNeil et al. 10 produced both monoclinic and hexagonal chalcocite, digenite, djurleite, anilite and minor amounts of covellite in experiments involving SRB. Their tests confirmed that all SRB-induced corrosion of copper and Cu-alloys produce chalcocite, and suggested that other minerals are produced under more specialized conditions. Most of the previous experimental work has concentrated on the rate of corrosion and the chemistry and adherence of the corrosion products. [Table 1 contains the mineral names, chemical formulae, crystal habits, and crystal systems of many common copper corrosion products.] Very little attention has been paid to the mineralogy and morphology of the corrosion products. Many previous investigations have employed flow-through apparatus or continuous stirring of experimental solutions. 1,3,5-7,9 These experimental conditions are not conducive to the formation of large, well-formed crystals. Tiny, poorly-formed crystals hinder description of the morphology of individual corrosion products and determination of their interrelationships. Two papers previously mentioned did describe the mineralogy of the corrosion film. MacDonald et al. reported orthorhombic $\mathrm{Cu}_2\mathrm{S}$, which they called chalcocite, cubic $\mathrm{Cu}_2\mathrm{S}$, and substoichiometric cuprous sulfide ($\mathrm{Cu}_{1.86}\mathrm{S}$), but they did not clearly differentiate their mineralogies. They corroded their copper samples in three deoxygenated solutions with different concentrations of dissolved sulfide. Mor and Beccaria occupated X-ray diffraction analysis of their corrosion products which were formed under a wider variety of conditions than those of MacDonald et al. They did not, however, present any SEM analysis of their
samples, nor did they report which minerals were verified by X-ray. The objectives of this investigation were to gain a clearer understanding of the chemistry, texture, mineralogy and adherency of corrosion products formed abiotically on 90Cu-10Ni alloy in seawater of varying pH and dissolved sulfide and oxygen concentrations. In the present study samples were allowed to corrode undisturbed in sulfide-rich seawater solutions in order to enhance the formation of well-crystallized minerals. Experiments such as these also permit a more accurate assessment of the changes in solution chemistry that accompany the corrosion process. The mineralogy, chemistry and texture of the minerals formed on the wafers were investigated by Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy (SEM), X-ray Photoelectron Microscopy (XPS), reflected light microscopy, and electron microprobe. ## EXPERIMENTAL PROCEDURES Synthetic seawater was used as a starting solution for these experiments in order to exclude bacteria from the solutions, and to provide a solution of known and reproducible composition. The seawater was prepared using a modification of the recipe of Lyman and Fleming 15 [revised by Kester et al. 16] and omitting the SrCl $_2$ H2O. The pH and salinity of each batch of synthetic seawater was monitored to ensure uniformity. The composition of the experimental solution is given in Table 2. Eighteen experimental solutions were prepared by combining synthetic seawater with varying concentrations of Na₂S 9H₂O (Table 3). Nine of these solutions were aerated solutions containing levels of dissolved oxygen that reflected equilibrium with the atmosphere (7.0 mg/l). The initial Eh value of these solutions, before addition of Na₂S·9H₂O, was 40 mV. After several hours of bubbling with laboratory air to ensure saturation with atmospheric oxygen, various amounts of Na₂S·9H₂O were added to these solutions. The pH was then adjusted by addition of HCl to maintain initial pH values between 8.1 and 8.4. Immediately following addition of Na₂S·9H₂O the Eh of these solutions dropped dramatically and then began to increase. The increase was rapid at first, due to oxidation of dissolved sulfide, but became more gradual as the corrosion reactions proceeded. Initial sulfide concentrations (S²⁻T) were varied between 1 and 289 ppm. Such high levels of sulfide were added to encompass the full range of likely chemical conditions. It is difficult to determine what concentrations may exist underneath active biofilms, and sulfide levels may reach this value. In order to limit the dissolved oxygen to the amounts initially contained in the synthetic seawater, the sample bottles were not opened after the Cu-Ni coupons were added. It was, therefore, not possible to determine the precise Eh values of these solutions as corrosion began. Initial Eh values were later estimated by bubbling synthetic seawater with nitrogen and monitoring Eh values and dissolved oxygen content. When the bubbled solution reached its lowest Eh value various concentrations of Na₂S•9H₂O were added and Eh values were recorded as the solution chemistry stabilized. Initial Eh values were then estimated by correlating the amount of sulfide added with the associated drop in Eh. Nine other solutions were prepared inside a nitrogen - filled glove box to create 6 partially-deaerated solutions (0.10 mg/l dissolved oxygen) and 3 deaerated solutions (0.02 mg/l dissolved oxygen). [During preparation of sample 36 the supply of nitrogen gas to the glove box was accidentally cut-off temporarily and the sample, which was originally designated to contain 0.02 mg/l of dissolved oxygen, actually contained 0.10 mg/l of dissolved oxygen.] The initial pH values of the partially-deaerated solutions varied between 7.84 and 8.42, and the initial Eh of the solutions (before addition of Na₂S 9H₂O) was -130 mV. Initial dissolved sulfide concentrations were varied between 1 and 289 ppm. Initial pH values in the deaerated solutions ranged from 8.07 to 8.36, initial Eh was mV, and initial dissolved sulfide concentrations were varied between 154 and 248 ppm. The Eh of the solutions following addition of Na₂S•9H₂O was estimated by the procedure described above. control solutions, partially deaerated and aerated, were prepared without addition of sulfide. The initial pH and Eh of the partially deaerated solution were 8.40 and -131 mV, respectively. the aerated control solution the initial pH was 8.40 and the initial Eh was 42 mV. Two 90Cu-10Ni wafers (1.3 cm²) were numbered; pretreated by thorough sanding, cleaning and rinsing; and placed in each solution to corrode for approximately 140 days. Electron microprobe analyses of the wafer indicated 87.04-88.19 weight percent (wt. %) Cu, 9.52-10.84 wt. % Ni, 1.15-1.64 wt. % Fe, and 0.26-0.36 wt. % Mn. A semi-quantitative EDX spectrum of a wafer is shown in (Figure 1). (The Al peak is due to the Al sample holder.) Copper wafers to be corroded in deaerated and partially deaerated solutions were placed in those solutions immediately after preparation in the glove box. Samples corroded in aerated solutions were removed under ambient laboratory conditions, rinsed with distilled water, and allowed to air dry. One sample from each bottle was then wrapped in protective paper and placed in a glass bottle to be shipped for XPS analysis. Samples corroded in deaerated and partially-deaerated solutions were removed in the nitrogen-filled glove box, rinsed with distilled water, and allowed to dry in the nitrogen atmosphere. These samples were wrapped in protective paper and sealed in sample vials containing a nitrogen atmosphere before shipment. The second wafer from the solutions was analyzed at East Carolina University by SEM, EDX, X-ray diffractometry, reflected light microscopy, and at the Virginia Polytechnic Institute by electron microprobe. The pH, Eh, and concentrations of dissolved sulfide and oxygen were determined for the solutions at the beginning and end of the corrosion process (Table 3). Experimental pH and Eh were determined using standard pH and platinum Eh electrodes, and a pH meter. The concentration of dissolved sulfide was determined by titration with lead perchlorate using a Ag-S electrode as an endpoint indicator. Samples of nitrogen-sparged, synthetic seawater were taken during solution preparation, prior to addition of Na₂S•9H₂O. These samples were analyzed for their content of dissolved oxygen using a modified form of the Winkler Iodiometric Titration. Oxygen determinations could not be made following solution preparation because the high concentrations of added sulfide interfere with the titration procedure. ## RESULTS Surface Examinations Using Standard Light Microscopy To facilitate the identification of corrosion products on the Cu-Ni wafers, specimens were analyzed and described both macroscopically and microscopically. A summary of the macroscopic descriptions is given in Table 4A. Reflected light microscopy did not reveal very much information due to the very fine-grained nature of the thin corrosion film. Chalcocite, and possibly covellite, were tentatively identified by these methods. Surface Examinations by SEM and EDX SEM descriptions of the corroded wafers are summarized in Table SEM photographs and EDX spectra of the significant minerals found on the corroded wafers are shown in Figures 2 - 8. system was not capable of detecting elements lighter than Na, therefore, oxygen and carbon do not appear in these spectra. Figure 2 is an SEM photograph and EDX spectrum of the lepispherical masses of dipyramidal paratacamite crystals found on samples 2, 4, 20, and the wafer placed in the aerated control solution. Figures 3 and 4 show cuprite cubes and octahedra, respectively, found in samples 2, 4, 10, and 16. Cuprite probably occurs in the inner layers of most samples but was usually covered by subsequent layers of corrosion The pseudo-hexagonal, tabular/dipyramidal Cu-S phase products. [probably mostly chalcocite] found in samples 10, 12 and 24-36 is described in Figure 5, and the serrated Cu-S phase found in samples 10-14 and 26-36 is described in Figure 6. In many samples the underlayer of corrosion product was the platy, porous, layer rich in Cu, S, Ni, and Fe described in Figure 7. The nodular Cu-S phase observed in samples 6, 8, 16, and 22 may be poorly-formed chalcocite (Figure 8). XPS Analysis X-ray Photoelectron Spectroscopy (XPS) is a surface analytical technique that provides semi-quantitative to quantitative elemental and chemical state (i.e., oxidation state) information to a depth of approximately 1 nm (100 A) in the sample. [Ion-sputtering (or etching) accessories are available which permit elemental profiling to greater depths.] The technique uses X-rays to stimulate the sample and detects photoelectrons emitted in response. these electrons can only travel a short distance before significant energy loss occurs, this technique only samples a very narrow, nearsurface region. The minerals occurring in this layer formed in response to the final experimental conditions existing in the solutions (Table 3). These were quite different from the initial levels of oxygen or dissolved sulfide which may have obtained during the first few days or weeks of the 4-month corrosion period. there was a significant difference between the initial and final experimental conditions, the mineralogy and chemistry of the bulk of the corrosion film differs considerably from that of the near-surface region in most cases. Spectra of standard materials are used to calibrate analytical results. Figure 9 is a chemical state plot for the standards analyzed during evaluation of these samples, as well as other values taken from the literature and published databases. It shows kinetic and binding energies useful for identifying the chemical state of sulfur. Characteristics of samples prepared during this study are plotted on Figure 9 and suggest that
chalcocite is the dominant corrosion mineral formed on the surface of the Cu-alloy wafers. This suggests that chalcocite was the dominant mineral formed in response to conditions existing near the end of the corrosion experiment. The plot does not exclude the possibility that the bulk of some samples may consist of other Cu-S compounds. The data plotted on Figure 9 is given in tabular form in Tables 5 and 6 along with some other characteristics of the samples. Tables 7 and 8 provide quantitative information on the surface composition of the samples. This data is for an extremely thin surface layer and, in some cases, may include residues generated by evaporation of small amounts of the synthetic seawater solution that was not rinsed from the samples. The surface chemistry may also have been affected by exposure of the samples to the atmosphere during removal from the solutions and shipment for XPS analysis. As an example, very little sulfur is indicated in Tables 7 and 8 although EDX and microprobe analysis of most samples showed large amounts of sulfur. Examination of Tables 7 and 8 indicates fairly good correspondence between large atomic percentages of Ca and Cl and the occurrence of aragonite and paratacamite, respectively, on the surfaces of the corroded samples. Some useful information about dealloying of the Cu wafer may also be derivable from these analyses. Aerated samples 6, 8, 16, 10, and 12, as well as, partially deaerated samples 20, 22, 24, and 26 contain significant amounts of Ni in the surface layer compared to other samples. Perhaps the solutions in which these samples formed are especially effective at preferentially leaching Ni from the Cu wafer. Information acquired during an ion-etching profile of the sample corroded in aerated solution 10 is summarized in Figure 10. Figure 10A shows the starting points for the three ion-sputtering profiles. In order to perform these the corrosion film was removed from the Cu-alloy wafer in a single layer. Figure 10-B shows the elemental distribution within the top and bottom of the corrosion film, and the top of the Cu-alloy wafer. Each minute of etching corresponds to a sample of approximately 50 A in thickness. The outermost surface of the corrosion film (far left of plot) shows high levels of O and Cu, and low levels of Ni, Ca, and S, suggesting that the outermost surfaces of the Cu-S minerals observed on this wafer were oxidized. Sulfur levels increase with increasing depth into the corrosion film, and oxygen levels decline. underside of the corrosion film shows very high levels of Ni and O, and lower levels of S and Cu. Sulfur is seen to reach a peak concentration within the mineral/oxide deposit close to the inner interface. This region is by far the richest in Ni with decreases in Ni, S and Cu observed towards the interface. Oxygen is seen to increase dramatically in this direction. The upper surface of the Cu-alloy wafer exhibits a sudden, dramatic decrease in Ni and increase in Cu, with O and S continuing to change across the interface as they did in the bottom of the corrosion film. The atomic proportions in this layer more closely approach those of tenorite than It was apparently overlain by a less-adherent film of mixed Ni, O, S, and Cu, with Ni and S reaching their peaks in this region. ## Electron Microprobe Analysis Samples 14, 22, 30, and 32 were analyzed with a Cameca SX50 electron microprobe for Cu, S, Ni, Fe, Mn, and Cl. Tables 9 and 10 summarize the results of quantitative microprobe analyses of these Table 9 shows representative analyses of minerals which are relatively low in nickel and have the stoichiometry of common copper-sulfide minerals. Table 10 includes data for nickel-rich phases which generally do not show the stoichiometry of a common copper-sulfide. Note also that most of the totals in Table 10 are significantly lower than 100 weight percent (wt. %). This is not a Almost all of the analyresult of selective presentation of data. ses showing greater than 5 wt. % nickel gave low totals (i.e. < 98 wt.%), and, in general, the phases yielding the lowest totals were the ones richest in nickel. Figure 11 shows the results of back scatter electron imaging and X-ray element mapping of sample 32. These four figures all represent a cross-section through the corrosion film and upper surface of the alloy wafer. They are all oriented with the alloy wafer to the upper left and the corrosion film to the lower right. The black region in between is mainly epoxy that infiltrated the gap between film and wafer whenever the film peeled away from the alloy. The brightness of various regions in Figure 11A is a complex function of composition. The base of the corrosion film has a distinctly darker coloration suggesting that its composition differs from that of the rest of the film. Analyses from the light-colored region of sample 32 are presented in Table 9 and those from the dark-colored region are given in Table 10. The X-ray element maps shown in Figures 11B-11D emphasize the zonal distribution of Cu and Ni, and indicate the homogeneous dis-The Ni-rich analyses from samples 30 and 32 given tribution of S. in Table 10 came from dark-colored zones such as that shown in Figure 11A. There was no clear distinction between dark and light zones in sample 14. This zone corresponds to the underside of the corrosion film, which occurs closest to the copper-nickel wafer. Analyses from Table 9 are of the copper-rich, nickel-poor phases in the outer portion of the corrosion film. This elemental distribution mimics that shown on the ion-etching profile of sample 10 (Figure 10). This profile shows very high values for oxygen in the underlayer of the corrosion film. The electron microprobe analyses conducted on these samples were not capable of detecting oxygen, which probably accounts for the low totals recorded for the nickelrich phases. The weight percent of Cu, Ni, Fe, Mn, and S in the Cu-S minerals ranged from 75.58-80.14 wt. %, 0.05-4.61 wt. %, 0-0.62 wt. %, 0-0.08 wt. %, and 19.06-20.76 wt. %, respectively. Recalculation of the analyses on the basis of 1 mol of sulfur yielded copper values between 1.847 and 2.08 mols. Analyses from sample 14 indicate a stoichiometry for the copper mineral that correspond to that of chalcocite (Cu₂S). Analyses of samples 30 and 32, however, suggest the possibility that copper-poor minerals such as djurleite (Cu_{1.96-1.97}S), digenite (Cu_{1.75-1.80}S) or even covellite (CuS) may occur admixed with the chalcocite. Except for covellite, these minerals are virtually indistinguishable from chalcocite with reflected-light microscopy, especially in such thin films as were formed on these wafers. Therefore, it is not possible to determine the interrelationships of these phases. At best, the data provide permissive evidence for the occurrence of djurleite, digenite, and perhaps covellite, especially in sample 30. ## Final Chemistry of Solutions Due to problems with the method selected to measure dissolved oxygen, this parameter was not determined at the conclusion of the corrosion experiment. The deaerated solutions had final dissolved sulfide concentrations of 58, 96, and 160 ppm, indicating a loss of 96, 96, and 88 ppm sulfide, respectively (Table 3). All other experimental solutions contained sulfide concentrations below the detection limit (BDL) of the sulfide electrode (i.e., 10⁻⁷ M total sulfide). Final pH values for aerated, partially deaerated and deaerated solutions ranged from 6.70 to 8.40, 6.80 to 8.60, and 8.45 to 8.71, respectively. Final pH values for most solutions were lower than the initial pH. With two exceptions, an increase in pH occurred only in solutions where the initial dissolved oxygen level was 0.02 mg/l (samples 30-34). Those solutions with an initial total sulfide content between 0 and 8 ppm, whether aerated or deaerated, displayed a pH change of no more than 0.4. The partially-deaerated sample with 289ppm (S^{2}_{-T}) showed a small decrease in pH (-0.01). The aerated control solution, with no added sulfide, showed no change in pH. The deaerated control showed an increase of 0.20 pH units. Figure 12 is a graph of the magnitude of the pH change observed in the solution versus the initial dissolved sulfide content of the solution. For initial dissolved sulfide concentrations up to 154 ppm, both the aerated and partially-deaerated solutions showed a decrease in pH and an increase in the magnitude of the pH change with increasing, initial, dissolved sulfide content. The partially deaerated sample that plots well away from the rest of the group is sample 36. Solutions with initial dissolved sulfide concentrations greater than or equal to 154 ppm (with the exception of the aerated solution) showed a much lower increase in the magnitude of the pH change with increased, initial concentration of dissolved sulfide. For the aerated solutions with these high dissolved sulfide levels, the pH decreased as reaction progressed, but for the deaerated solutions, pH increased. The data displayed in Figure 12 suggest that the magnitude of the change in pH may be a measure of the extent of reaction. If that is the case, the extent of reaction appears to be a strong function of initial sulfide content for solutions with less than 160 ppm sulfide and 0.10 mg/l < $O_{2(aq)}$ < 7.0 mg/l. In these solutions higher initial sulfide concentrations may have caused more extensive corrosion to occur. At higher dissolved sulfide levels the extent of reaction does not vary significantly with changes in sulfide content and may, instead, have been limited by oxygen availability. The fact that the low-oxygen, high-sulfide solutions of samples 30-34 contained unreacted dissolved sulfide at the end of the experiment supports this hypothesis. The aerated solutions can be divided into a high- and low- pH group with initial pH values near 8.40 and 8.15, respectively. The high-pH group (4,8,10,12,14) did not show a good correlation
between initial concentration of dissolved sulfide and the magnitude of the change in pH observed, but it did show a good correlation between increasing concentration of dissolved sulfide and decreasing final Eh. The exception is the control solution, which had no added sulfide. The low-pH group (2,6,16) showed a good correlation between initial concentration of dissolved sulfide and the magnitude of the change in pH observed, but showed a virtually constant final Eh. The partially-deaerated solutions can be divided into a high-pH/high-sulfide group (24-26) and a low-pH/low-sulfide group (20,22). In the former the pH change was very large (>1.40) and negative, while in the latter the pH change was quite small (approximately 0.25) and negative. Abundant, well-crystallized, pseudo-hexagonal, Cu-S minerals characterized the former group, whereas the latter showed only poorly-formed Cu-S phases. Final Eh values for aerated, partially-deaerated and deaerated solutions ranged from 64.0 to 229.6 mV, 186 to 206 mV, and -350 to -386 mV, respectively. Sample 36 was -35 and the control sample was 84.0. For the aerated and partially-deaerated solutions an increase in the initial concentration of dissolved sulfide was generally correlated with a decrease in final Eh value. The deaerated solutions with very large, negative values for final Eh contained greater than 154 ppm of dissolved sulfide initially. ## DISCUSSION Many of the trends and correlations observed in the chemistry of the experimental solutions may be explained by examining the minerals that formed and analyzing the possible reactions by which they can form. Activity and Eh-pH (Pourbaix) diagrams are useful in such an analysis. These diagrams are also helpful for 1) summarizing aqueous solution/mineral relations, 2) recognizing disequilibrium, 3) suggesting when relative reaction rates, as well as, thermodynamic equilibrium, are determining the observed mineral assemblages, and 4) predicting the stable minerals that will form in In the following sections the initial and final various solutions. chemistry of the experimental solutions is discussed and evaluated in light of the mineralogy of the corrosion products that formed in those solutions. The results are plotted on various activity and Eh-pH diagrams in an attempt to explain the observed mineral assemblages and changes in solution chemistry. But first, the sulfur chemistry of the solutions must be elucidated. Sulfur Chemistry of the Solutions The dominant sulfur-bearing ions and molecules found in natural waters are $SO_4^{\ 2}$, HSO_4 , S^2 , HS, H_2S and a variety of polysulfides (SS^2 , S_2S^2 , S_3S^2 , S_4S^2 , etc.). Eh and pH determine which sulfur species are present (Figure 13). [Thermodynamic data used in the construction of this and other diagrams are given in Table 11.] Figure 13 indicates that the dominant stable sulfur species in well-oxygenated seawater is $SO_4^{\ 2}$. HS, H_2S and polysulfides are the species most commonly found in reducing conditions. The pH values for which S^2 or HSO_4 will be dominant species are considerably outside the range of average seawater and the experimental solutions prepared for this research. Syrett et al. 1 and Giggenbach 17 have shown that the polysulfides SS^2 , S_2S^2 , S_3S^2 and S_4S^2 may exist in sulfide-polluted seawater, but that only S_3S^2 and S_4S^2 are present in significant quantities. Data presented by Syrett et al. 1 indicated that the equilibrium molar ratio of species at a pH of approximately 8.3 is [HS]: $[S_3S^2]$: $[S_4S^2]$ = 1:0.0263:0.126. The presence of polysulfides in seawater increases corrosion rates of copper alloys 1, however, in the course of this experimental work the concentrations of polysulfides could not be determined. Therefore, only the four species SO_4^2 , H_2S , H_5 and S^2 are considered in this paper. Of these, only HS and SO_4^2 are important for the range of Eh and pH observed in this study. The reduced sulfur added to the experimental solutions in the form of Na₂S 9H₂O can be oxidized to SO_4^{2-} depending on the level of oxidizing agents available in the solutions. Avrahami and Golding and Millero et al. 19 found that dissolved sulfide is oxidized rapidly in seawater. They determined values for the half-life of hydrogen sulfide (H₂S) in seawater of 20 minutes and 26 (+ 9) hours, respectively. Even assuming the longer half-life, any significant additions of sulfate to these solutions due to oxidation of sulfide would have occurred within the first week of the experiment. Calcu- lations showed that the oxidation of sulfide in solution could make only an inconsequential addition to the sulfate content of the synthetic seawater solutions. Even assuming that all the dissolved oxygen in the solution was used to convert HS to sulfate, the maximum possible increase in sulfate concentration would be an insignificant 2.00 X 10^{-4} mol/l (<1%). Sulfate in these experimental solutions was not reduced because reduction of seawater sulfate requires bacterial catalysis 20 , as it is a slow process even by geologic standards. Therefore, the dissolved sulfate concentrations in these solutions can be accurately represented by the dissolved sulfate concentration of the initial synthetic seawater solution. The speciation of reduced sulfur was estimated using pH and the concentration of total dissolved sulfide (S_T) in each solution (Table 3). S_T is related to the concentration of the individual reduced sulfur species by the following equation: $$S_T = HS^- + H_2S + S^{2-}.$$ (1) For this calculation the two dissociation constants chosen for H_2S were $pK_1=6.514$ ($K=10^{-6.514}$) 21 and $pK_2=17.323$ ($K=10^{-17.323}$) [modified from Schoonen and Barnes 22]. At the pH values encountered in these solutions (7.84 < pH < 8.45), it was determined that H_2S initially made up less than 5% of the reduced sulfur with S^2 contributing at most six orders of magnitude less than that. Only solutions 30 - 34 had detectable dissolved sulfide remaining at the 2nd of the corrosion experiment. The pH values in these solutions had risen to 8.45 - 8.71, so, the concentration of H_2S was even less than initially and amounted to less than 2% of the reduced sulfur. The estimated concentration of S^{2-} was less than 7 X 10^{-12} M. HS is, therefore, the dominant reduced sulfur species considered in this paper. ## Conditions of Mineral Formation Figures 14 and 15 show the stability fields of the copper minerals most likely to occur in natural, sulfide-poor seawater (i.e., tenorite, brochantite, malachite, azurite, and paratacamite). A number of solution variables determine which of the common cupric minerals form. For this research products of the activities of the hydrogen, chloride, and sulfate ions are graphed versus the pressure of CO₂ gas. The dots show the composition of the aerated solutions that were very close in composition to natural seawater. The squares show the composition of the deaerated and partially-deaerated solutions. The latter solutions were bubbled with nitrogen gas to remove oxygen, which also removed most of the dissolved CO₂ gas. The CO₂ pressures of these latter solutions are estimates. Figure 15 predicts that there is not enough sulfate in any of these solutions to stabilize brochantite with respect to tenorite and malachite. Figure 14 predicts that either malachite or paratacamite should form and both these minerals are, in fact, observed corroding copper, bronze or brass in seawater. Paratacamite was the phase observed in the most sulfide-poor (< 9 ppm) solutions of these experiments. The small amounts of Cl added as HCl to adjust initial pH values apparently stabilized paratacamite with respect to mala- chite in the aerated solutions. Cuprite and aragonite also appeared on the samples corroded in the sulfide-poor, aerated solutions. Cuprite was observed beneath the paratacamite, and aragonite on top of the copper-chloride phase. The first corrosion product to form on the Cu-alloy was probably cuprite followed by the formation of paratacamite. A reaction such as the following could account for the formation of paratacamite in these solutions: $$2Cu_2O(s) + 2Cl^-(aq) + 2H_2O(1) + 2H^+(aq) + O_2(aq) =$$ $$Cu_4(OH)_6Cl_2(s).$$ (2) The formation of paratacamite consumes H^+ ions causing an increase in pH. Just such an increase in pH was observed in solution 2 in which paratacamite was formed. Due to an increase in pH precipitation of paratacamite via reaction (2) in some cases may have initiated the following reaction: $$Ca^{2+}(aq) + HCO_3(aq) = CaCO_3(s) (aragonite) + H^+(aq)$$ (3) This may explain the occurrence of aragonite on sample 4. The formation of aragonite crystals releases H⁺ ions which possibly explains the small pH decrease observed on sample 4. Precipitation of aragonite, therefore, tends to counteract the effect of paratacamite precipitation. When reactions (2) and (3) both occur pH could remain virtually unchanged. On sample B aragonite and paratacamite were observed and the initial and final pH values in the solution were the same (8.40). The corrosion product formed in the partially deaerated solution with 1 ppm initial dissolved sulfide (sample #20) was also dominated by paratacamite. The pH of this solution decreased slightly during the course of the experiment. Hydrolysis of cupric ion may have been responsible for this. Reactions occurring in solutions with sufficient dissolved oxygen can form highly acidic sulfur species, such as sulfurous acid (H_2SO_3) . Syrett 9 found that such sulfide oxidation reactions are accompanied by a pH decrease. Some aerated $(6,\ 8,\ 16,\ 10,\ 12,\ 14)$ and partially deaerated $(22,\ 24,\ 26,\ 36)$ samples experienced a pH decrease during production of the sulfide corrosion product. This may have been due to H_2SO_3 formation in solutions with sufficient oxygen to oxidize
substantial amounts of sulfide. With so many complex reactions possible it is difficult to predict the differences in solution conditions that may favor one over the other. The corrosion products formed in solutions where significant variations in oxidation potential were observed are best evaluated using plots such as Figures 16, 17, and 18. These Eh-pH diagrams show the stability fields of some of the common copper corrosion products, and the initial and final solution compositions. To construct them the reactions occurring at the phase boundaries were written involving the dominant sulfur species for those Eh-pH conditions. On Figure 16 the solid and dashed boundaries were drawn assuming concentrations of the aqueous sulfur species to be 10⁻² and 10⁻⁴ mol/L, respectively. This is the approximate range of dissolved sulfur activities observed during this research. Figure 16 indicates how the sizes of the various stability fields change as the activities of dissolved sulfur species change. For simplicity, Figures 17 and 18 are drawn for a single activity of dissolved sulfur species of 10⁻³, which is in the middle of the range observed. Also, the initial and final solutions compositions are plotted separately and their oxygen contents are indicated. The stability fields for digenite and djurleite were not included on these diagrams due to the lack of accurate thermodynamic data for those minerals. Djurleite and digenite have copper to sulfur ratios intermediate to those of covellite and chalcocite and could be expected to form under conditions between those which favor formation of covellite and chalcocite. When accurate data become available, the fields of djurleite and digenite may appear as very narrow bands wrapped around the covellite field. The initial pH and estimated Eh values of the experimental solutions are plotted on Figure 17. Solutions 2, 4, and 6, all plot in, or on the boundary of, the cuprite field. No significant Cu-S phases were observed on these samples. Solution 20, which also did not develop a Cu-S phase, did not initially plot up with the other oxidized solutions, but instead plotted in the cuprite field. Solutions 8, 16, 22, and 24 plotted near the native copper/Cu₂S boundary and all samples except 24 developed poorly-formed, pseudohexagonal Cu-S crystals, which are probably chalcocite. Sample 24 developed well-formed Cu-S crystals. The remaining solutions initially plotted well within the stability fields of the Cu-S phases. Cu-Ni wafers corroded in these solutions all show well-formed, Cu-S crystals suggesting that they formed under conditions more favorable for the precipitation of the reduced copper-sulfide minerals. Minerals identified by EDX and SEM analysis are generally those predicted by the Eh-pH diagram. The three deaerated samples: 30, 32, and 34; initially contained 154, 192 and 248 ppm of dissolved sulfide, respectively. They plot close together in the chalcocite or covellite stability fields on Figures 17 and 18. The dominant reaction taking place in these solutions may have been 6,9 : $$2Cu^{\circ}(s) + HS^{-}(aq) + H^{+}(aq) + 1/2O_{2}(aq) = Cu_{2}S(s) + H_{2}O(1)$$ (4) Once the solution became completely depleted in dissolved oxygen the following reaction [described by Syrett 9] may have been responsible for the attack on the wafer: $$2Cu^{\circ}(s) + HS^{-}(aq) + H^{+}(aq) = Cu_{2}S(s) + H_{2}(q)$$ (5) Reactions such as the two above would cause an increase in pH by consuming hydrogen ion. Such an increase was observed in solutions 30, 32 and 34. These are the only three solutions which remained within the stability fields of the copper sulfide minerals for the entire 4 months of the corrosion experiments. At the end of the experiment all other solutions plotted in the cuprite or parataca- mite fields, however, well-formed copper-sulfide phases persisted in many of these solutions. These experiments are parallel to the microbiological alteration studies of Baas-Becking and Moore 13, McNeil et al. 10 and others, and it is interesting to consider differences and similari-The water chemistry in these experiments remains near neu-This is normal for a bulk seawater experiment, but may represent conditions quite different from those near an anodic site under The conditions are also different from those observed by 1. 10 during experiments on marsh and lake waters. In McNeil et al. experiments with aerated water, the Eh appears to drop at first and then to remain relatively oxidizing. This is very different from measurements under biofilms (R. Newman, private communication, 1991) which indicate very reducing environments. In biofilms in natural environments, therefore, there is a continuous source of sulfide ions and a local reducing environment. This may explain why in estuarine environments blue-remaining covellite is found (J. Craig, private communication, 1991), while laboratory experiments do not synthesize it except under very special conditions not representative of the biosphere. 23 On Figure 13 the initial and final solution compositions are plotted on an Eh-pH diagram showing the stability fields of the dominant species of dissolved sulfur. Initially, only aerated samples 12 and 14, and partially deaerated or aerated samples 30-36 plotted in the HS stability field. In all other samples, ${\rm SO_4}^{2-}$ was the stable form of aqueous sulfur. In these latter samples oxidation of sulfide would have begun immediately upon addition. Even assuming the longer half-life of 26 hours for H₂S 19 , the sulfide level in the most concentrated of the solutions would have been reduced to < 2 ppm in the first week. Although such low sulfide levels are not conducive to Cu-S mineral formation, copper sulfide minerals were observed in most of these solutions. This suggests that the reduced sulfur was scavenged rapidly by copper, possibly forming an amorphous or cryptocrystalline Cu-S phase which later crystallized to chalcocite, djurleite, digenite, or possibly covellite. These observations suggest a model for this abiotic sulfiding corrosion. They are consistent with the hypothesis that most of the sulfide reacts with water and copper almost immediately (probably The result of the reaction with copper may be an within a week). amorphous or cryptocrystalline sulfide. Its formation may parallel that of the amorphous sulfide conjectured to exist as a precursor to mackinawite (FeS_{1-x}) in sulfiding corrosion of iron. compound then reacts to produce the sulfide minerals generally observed in copper-sulfiding corrosion. It is significant to note that the sulfide minerals persist, and perhaps even alter to other sulfide minerals, in such an oxidizing environment. This is in contrast to the observations of Olowe et al. 25 on iron. They found that if local conditions became oxidizing the low iron sulfides, such as mackinawite, altered to green rust 2 - a sulfate compound. This difference probably reflects the greater stability of low copper sulfides, such as chalcocite, with respect to the oxidized copper minerals. Despite the frequent observation of sulfide minerals in corrosion, and the fact that millerite (NiS), at least, can be produced by SRB, no observation of nickel sulfides in copper-nickel alloy corrosion products has ever been made. This may be explained by the model put forward here. Dissolved divalent nickel ions exchange waters of hydration with the groundwater much more slowly than dissolved divalent copper ions. This fundamental difference in reactivity makes nickel oxide dissolve much more slowly than copper oxide. This difference is likely to extend to other minerals. This suggests that the copper binds with all available sulfide ions before the nickel can. ## Potential for Corrosion Protection The development of a corrosion product film that may afford the alloy some protection from further corrosion depends on the chemistry of the solution, the mineralogy of the corrosion product, and the mineral assemblage. As postulated by many researchers, cuprite may be somewhat protective if it can be preserved, however, it is readily converted to other minerals. This research provided evidence for this as cuprite was only rarely observed. When cuprite occurs as part of a porous, heterogeneous Cu-O-Ni-Fe-S layer it is even less likely to provide any protection. The paratacamite films observed showed poor-to-good adherence, but paratacamite is often associated with pitting. The thin, cracked underlayer of Cu-S-Ni-Fe appears to offer little prospect of corrosion protection, as it shows very poor adherence and minimal internal cohesion. heterogeneous films have the additional disadvantage that layers made of interpenetrating crystals of differing morphologies may be more porous to corrosive ions. These nonprotective, corrosion These nonprotective, corrosion films formed in aerated solutions containing less than or equal to 8 ppm dissolved sulfide, and in partially deaerated solutions having less than 8 ppm dissolved sulfide. The other corrosion films were dominated by relatively pure Cu-S minerals occurring either as well-developed crystals or lepispher-These films ranged from ical masses of poorly-formed crystals. being nonadherent to showing good adherence. In the aerated solutions only the films formed under conditions of high, initial sulfide (samples 12 and 14) showed good adherence. Electron microprobe analysis of sample 14 indicated only chalcocite, which is described as non-protective. These samples were also composed of both the hexagonal and serrated Cu-S phases which would tend to enhance corrosion rates. Only the most sulfide-rich, partially deaerated solution produced a homogeneous, adherent coating composed dominantly of one type of Cu-S crystal -- the pseudo-hexagonal variety (probably chalcocite with small amounts of a copper-poor sulfide). Corrosion films formed in deaerated solutions all exhibited good adherence and were dominated by Cu-S crystals showing a
single morphology -- two were dominated by the hexagonal crystals (30 and 34) and one by the serrated crystals (32). As discussed previously these three samples are the most likely to contain the potentially protective mineral djurleite. In summary, adherent films appear to form only in deaerated solutions or in solutions with very low or very high initial sulfide levels (i.e., S^{2-} >200 ppm or < 9 ppm). Also, solutions plotting initially in the stability field of HS produced Cu-S films with good adherence. Few of these films, however, are likely to protect Cu-alloys from further corrosion. Only the solutions with initial dissolved sulfide concentrations greater than 150 ppm produced both adherent, homogeneous and potentially-protective films. Most of these films, however, are probably dominated by chalcocite which is non-protective. If djurleite does form a coating which enhances the corrosion resistance of copper alloys ¹¹, it will most likely form under the same conditions as those that produced the homogeneous adherent films in deaerated, high-sulfide solutions (30-34). Figures 13, 16, and 17 show the initial and final Eh-pH conditions under which these films formed. Note that only these three solution compositions fall within the stability fields of the copper sulfide minerals throughout the entire experiment. Djurleite is in an intermediate sulfidation state between that of covellite and chalcocite, therefore, it would be expected to form under conditions such as those indicated for these solutions. Microprobe analyses of samples 30 and 32 suggest the presence of a copper-poor sulfide which may be djureleite. ## CONCLUSIONS Chalcocite and possibly djurleite, digenite, and small amounts of covellite, were formed abiotically in synthetic seawater solutions with varying Eh, pH and concentrations of dissolved oxygen and sulfide. Formation of these well-crystallized Cu-S minerals may have been preceded by growth of an amorphous or cryptocrystalline Cu-S phase. This postulated, precursor phase probably began forming as soon as the Cu-Ni wafer was immersed and may have been nearly completed within the first week of the experiment. In the case of microbiologically-influenced corrosion, SRB appear to maintain a reducing, high-sulfide, possibly low-pH environment near the metal Conditions in these abiotic experiments, however, became quite oxidizing and sulfide-poor in the latter stages of the corrosion process. Overall initial pH seems to correlate less significantly with other solution parameters and corrosion-product mineralogy than any other chemical characteristic of the solutions. solved sulfide and oxygen concentrations appear to influence the course of the corrosion process more significantly. If djurleite can provide corrosion protection, deaerated, sulfide-rich solutions seem to offer the best prospect for coating Cu-alloys with such protective Cu-S films. ## **ACKNOWLEDGEMENTS** I gratefully acknowledge the efforts of Dr. Peter Zhdan and Dr. James Castle at the University of Surrey, who provided the XPS analysis. Todd Solberg and Dr. James Craig of the Virginia Polytechnic Institute provided the use of the electron microprobe and helped with sample preparation and collection of the data. This work was supported by the Office of Naval Research, Program Element 51153N, through the NOARL Defense Research Sciences Program. NOARL Contribution Number 333:022:92. ## REFERENCES - B.C. Syrett, D.D. MacDonald, S.S. Wing, Corrosion, 35, (1979):p. 409. - R.B. Niederberger, J.D. Gudas, G.J. Danek, CORROSION/76, paper no. 76, (Houston, TX: NACE, 1976). - 3. B.C. Syrett, Corrosion, 21,(1981): p. 187. - 4. B.C. Eiselstein, S.S.Wing, R. D. Caligiuri, Corrosion Science, 23,(1983):p. 223. - 5. E.D.Mor, A. M. Beccaria, British Corrosion Journal, 10, (1975):p. 33. - 6. N. Mukhopadhyay, S. Baskaran, Corrosion, 42, (1986):p. 113. - 7. D.D.MacDonald, B.C.Syrett, S. S. Wing, Corrosion, 35, (1979):p. 367. - 8. R.F. North, M. J. Pryor, Corrosion Science, 10, (1970):p. 297. - 9. B.C. Syrett, Corrosion, 33, (1977):p. 257. - 10. M.B. McNeil, J.M. Jones, B.T. Little, Corrosion, 47, (1991):p. 674. - 11. N.A. North, I. D. Macleod, Corrosion of Metals <u>IN</u>: Conservation of Marine Archaeological Objects, (C. Pearson, ed.) (London, Butterworths, 1987), p. 81. - 12. E. Roseboom, Economic Geology, 61, (1966):p. 641. - 13. L. Bass-Becking, D. Moore, Economic Geology, 56, (1961):p. 259. - 14. P.A. Schweitzer, What Every Engineer Should Know About Corrosion (New York: M. Decker, 1987), p. 21. - 15. J.Lyman, R.H. Fleming, Journal of Marine Research, 3,(1940):p. 134. - 16. D. Kester, E.W. Duedall, D.N. Connors, R. M. Pytkowicz, Limnology and Oceanography, 12,(1967):p. 176-178. - 17. W.F. Giggenbach, Inorganic Chemistry, 11,(1972):p. 1201. - 18. M. Avrahami, R.M. Golding, Journal Chemical Society, A, (1968): p. 647 - 19. F. Millero, S. Hubinger, M. Fernandez, S. Garnett, Environmental Science & Technology, 21, (1987):p. 439. - 20. J. Boulegue, Geochimica et Cosmochimica Acta, 42,(1978):p. 1439. - 21. F. Millero, T. Plese, M. Fernandez, Introduction to Marine Chem istry, 33, (1988):p. 269. - 22. M.A. Schoonen, H. L. Barnes, Geochimica et Cosmochimica Acta, 52, (1987):p. 649. - 23. D.T. Rickard, Stockholm Contributions Geology, 23, (1971):p.1. - 24. J. Morse, F. Millero, J. Cornwell, D. Rickard, Earth Science Reviews, 24, (1987):p.1. - 25. A. Olowe, P. Bauer, J. Genin, J. Guezennec, Corrosion, 45, (1989):p. 229. - 26. W. Casey, Journal of Colloid and Interface Science, 146, (1991): p.586. - 27. T.L. Woods, R.M. Garrels, Economic Geology, 81, (1986):p.1989. Table 1 Chemical formulae and crystallographic characteristics of selected copper minerals. | Mineral | Formula | Crystal
habit | Crystal
system | |--|---|---|-------------------| | Anilite | Cu ₇ S ₅ | Probably pseudo-
hexagonal | ortho | | Antlerite | си ₃ (он) 4 so4 | Nearly equant | ortho | | Aragonite | caco ₃ | Acicular prisms | ortho | | Azurite | си ₃ (он) ₂ (со ₃) ₂ | Tabular or prismatic
globular radiated | nom | | Blaubleibender (Blue $c_{1+\chi^S}$ | er (Blue remaini
Cu _{l+X} S | remaining covellite)
Hexagonal tabular
crystals or massive | hex | | Brochantite | Cu4 (OH) 6SO4 | Acicular, tabular | mon | | Chalcocite | cn ² s | Pseudo-hexagonal
tabular crystals
usually massive | TO E | | Covellite | cus | Hexagonal tabular
crystals or massive | hex | | Cuprite | c ² o | Cubes and octahedrons | iso | | Digenite | Cu _{1.8} S | Pseudo-hexagonal
crystals | iso | | Djurleite | Cu _{1.97} S | Rarely as pseudo-
hexagonal, tabular
crystals. Usually
massive | nom | | Malachíte | си ₂ (он) ₂ со ₃ | Prismatic, acicular
botryoidal | HOT | | Paratacamite Cu ₄ (OH) ₆ Cl ₂ | Cu4 (OH) 6Cl2 | Rhombohedral
dipyramidal | hex | Notes: Key to abbreviations: Table ŧ Comparison of the composition of natural and synthetic seawaters (from Kester et al., 1967) | Natural
seawater
(gms/kg of
seawater) | 19.353 | 10.760 | 2.712 | 1.294 | 0.413 | 0.387 | 0.142 | 0.067 | 0.008 | 0.026 | 0.001 | |---|--------|--------|--------------------|------------------|------------------|-------|------------------|-------|-----------|--------------------------------|----------| | Artificial
seawater
(gms/kg of
seawater) | 19.353 | 10.764 | 2.701 | 1.297 | 0.406 | 0.387 | 0.142 | 0.066 | 000.0 | 0.026 | 0.001 | | Ion | | Na+ | so ₄ 2- | Mg ²⁺ | Ca ²⁺ | K+ | HCO ₃ | Br- | sr^{2+} | H ₃ BO ₃ | l
ſ±4 | mon - monoclinic ortho - orthorhombic tri - triclinic iso - isometric hex - hexagonal Table 3 # Summary of chemical data for experimental solutions. | Specimen | Oxygen
Mg/L
Initial | ** Eh
Initial
mV | Eh
Final
mV | Approximate
△ Eh | Initial
PH | Final
pH | ۵
Hg | Initial
Sulfide
ppm | Final
Sulfide
ppm | |----------|---------------------------|------------------------|-------------------|---------------------|---------------|-------------|---------|---------------------------|-------------------------| | 1,2 | 7.00 | 04 | 224 | 180 | 8.14 | 8.18 | 0.04 | - | BDL | | 9,4 | 7.00 | 8 | 216 | 190 | 8.45 | 8.10 | -0.35 | œ | BDL | | 5,6 | 7.00 | 8. | 214 | 230 | 8.14 | 7.49 | -0.65 | 40 | BDL | | 7.8 | 2.00 | -140 | 230 | 370 | 8.42 | 7.47 | -0.95 | 115 | BDL | | 16.17 | 7.00 | -500 | 823 | 430 | 8.15 | 6.70 | -1.45 | 7 | BDL | | 10,11 | 7.00 | -560 | 150 | 410 | 8.40 | 8.06 | 6.34 | 192 | BOL | | 12,13 | 7.00 | -360 | 100 | 460 | 8.35 | 8.24 | 0.11 | 256 | BOL | | 14,15 | 7.00 | 410 | 8 | 200 | 8.39 | 7.89 | 0.50 | 289 | BOL | | 20,21 | 0.10 | -130 | 508 | 340 | 8.10 | 7.86 | -0.24 | ,- | BOL | | 22,23 | 0.10 | -140 | 204 | 350 | 7.84 | 7.58 | 0.26 | 83 | BDL | | 24,25 | 0.10 | -500 | 193 | 390 | 8.24 | 6.82 | -1.42 | 83 | BDL | | 26,27 | 0.10 | -270 | 186 | 460 | 8.25 | 6.80 | -1.45 | 115 | BDL | | 30,31 | 0 02 | .360 | -361 | 0 | 8.36 | 8.71 | 0.35 | 25 | 83 | | 32,33 | 0.02 | 410 | -357 | 96 | 8.07 | 8.65 | 0.58 | 192 | 8 | | 34,35 | 0.02 | -470 | -386 | 8 | 8.29 | 8.45 | 0.16 | 248 | 160 | | 36,37 | 0.10 | 480 | -35 | 510 | 8.42 | 8.41 | 0.01 | 583 | BOL | | ⋖ | 0.10 | -130 | \$ | 214 | 8.40 | 8.60 | 0.20 | 0 | 0 | | 89 | 7.00 | 45 | \$ | 83 | 8.40 | 8.40 | 0.00 | 0 | 0 | BDL = Below detection limit: detection limit for sulfide electrode is $10^{-7}M$, S^{2-} ^{**}estimated from method described in text, subject to an error of at least 50 mV , | | Table 4A Macroscopic Characteristics of Wafers | 8 | In areas where reddish-brown protein film containing numerous over visible. Brownish-red coates and an areas of paratecally manages of paratecally in the coates. | |--------------------
--|----|---| | Specimen
Number | Description | • | Top layer consisted of packets | | ~ | Thin, reddish-brown coating, poorly adherent. | | abundant in this layer. The bo a thin, black, cracked film cor | | ₹ | Thick, <u>adherent</u> , green coating with abundant, acicular, white crystals. | ø | Rare CaCO, in top layer. Poorl gonal Cu ₂ s crystals doped with | | • | Thin, <u>poorly adherent</u> , black coating with black tarnish where coating washed away. | ω, | Upper surface of corrosion fills formed, pseudo-hexagonal Cu ₂ S apparently porous, layer of plants | | ω | Thick, <u>poorly adherent</u> , black coating. Washed off on edges exposing tarnished wafer. | 10 | lies the upper surface. Abundant Cu.O cubes and pseudo | | 10 | Thick, <u>non-adherent</u> , black coating. | | Elongate, platy Cu ₂ S crystals intermixed with the Cu ₂ O and p | | 12 | Thick, brown, <u>adherent</u> coating. | 12 | Upper layer composed of pseudo-
date, platy Cu.S with serrated | | 14 | Thick, brown, <u>adherent</u> coating. | | crystals surrounded by Fe-rich dant in upper layer. | | 16 | Thick, <u>non-adherent</u> , dark gray-to-black coating. | 14 | Corrosion film composed predomi | | 20 | Thin, <u>adherent</u> , tarnished, brown corrosion film with patches of blue and green. | 16 | Upper layer is predominantly in | | 22 | Thick, <u>adherent</u> , black coating. | | in areas where Cu ₂ S coating was | | 24 | Thick, non-adherent, dark-gray coating. | 20 | Coating composed of poorly-form | | 26 | Thick, non-adherent, black coating. | 25 | Coating composed of poorly-form | | 30 | Thick, brownish-gray, adherent coating. | 24 | Coating composed of tabular and hexagonal Cu ₂ S crystals. | | 32 | Thick, brown, <u>adherent</u> coating in center with green and
yellow coating at edges. | 56 | Upper layer dominated by packet underlying layer consists of te pseudo-hexagonal Cu ₂ S. Elongate | | 34 | Thick, black, <u>adherent</u> coating covered with
White, acicular crystals. | 30 | with serrated edges are interm;
Upper layer dominated by tabula
intermixed with elongate, serra | | 36 | Thick, brown, <u>adherent</u> coating. | 32 | Coating dominated by elongate,
Intermixed within the upper lay
hexagonal Cu ₂ S crystals. | # Specimen Number ## Description - product washed away, a cracks and cubes of Cu_2O ating appeared as lepiite crystals. - bottom layer consisted of s of acicular CaCO₃ crysontaining Cu20 crystals. - rly-formed, pseudo-hexah Fe & Ni dominate top. - is consists of poorly-ferare CaCoj. A thin, laty Cu-S minerals under- - o-hexagonal Cu₂S crystals with serrated edges were pseudo-hexagonal crystals - o-hexagonal Cu₂S and elondedges. Packets of CaCO₃ h nodules were also abun- - minantly of CaCO3, underrrated edges. - intergrown, poorly-formed, s. Cubic Cu₂O was exposed as removed. - rmed paratacamite crystals - rmed pseudo-hexagonal Cu2S - nd dipyramidal, pseudo- - ets of CaCO₃ crystals. The tabular and dipyramidal, te, platy Cu₂S crystals mixed. - lar, pseudo-hexagonal Cu₂S rated Cu₂S phase. - , serrated Cu₂S crystals. ayer are tabular pseudo- - Coating dominated by tabular, pseudo-hexagonal Cu₂S intermixed with elongate, serrated phase. Overlain by CaCO3 crystals. 34 36 Coating dominated by tabular, pseudo-hexagonal ${\rm Cu}_2{\rm S}$ intermixed with ${\rm CaCO}_3$ crystals. Elongate, serrated ${\rm Cu}_2{\rm S}$ phase was present, but rare. Table 5 XPS and XAES data for deaerated samples | | | | · · · · · · · · · · · · · · · · · · · | ····· | | T | T | | Τ | |--------|-------|-------|---------------------------------------|--------|-------------|---------|--------|--------|-------| | Sample | S2p | S2p | SKLL | SKLL | Ni2p3/2 | Cu2p3/2 | Cu LaW | Cu | S | | | B.E. | B.E. | K.E. | K.E. | 8.E. | B.E. | K.E. | AP | AP | | | (eV) | | (1) | (2) | (1) | (2) | | | | | | | CNB | | - | | — | 852.4 | 932.4 | 918.6 | 1851.0 | _ | | 20 | 162.2 | 169.2 | 2115.2 | 2107.8 | 858.4 | 932.8 | 918.6 | 1849.2 | 2277. | | | 162,4 | | 2114.8 | | 856.2 | 932.4 | 916.4 | 1848.8 | 2277. | | 22 | 162.4 | _ | 2115.2 | | 859.2 | 932.4 | 918.4 | 1848.8 | 2277. | | 24 | 162.2 | | 2115.4 | | 858.4 | 932.4 | 916.4 | 1848.8 | 2277. | | • | 162.6 | | 2115.2 | | 856.6 | 932.4 | 916.4 | 1848.8 | 2277. | | | 161.8 | 169.0 | 2118.2 | 2107.6 | 856.0 | 932.2 | 917.2 | 1849.4 | 2278 | | 26 | 162.6 | 189,4 | 2114.8 | 2107.0 | 856.4 | 932.4 | 918.4 | 1848.8 | 2277. | | | 162.2 | | 2115.2 | _ | | 934.2 | 916.2 | 1850.4 | 2277. | | 30 | ***** | _ | | | | 934.8 | 916.2 | 1850.8 | | | | 162.2 | | 2115.6 | | 857.0 | 932.4 | 916.4 | 1848.8 | 2277. | | 32 | 1622 | | 2115.7 | _ | 862.4 | 932.4 | 918.4 | 1848.8 | 2277. | | | 161.6 | | 2118.1 | | 856.4 | 932.0 | 917.0 | 1849.0 | 2277 | | 34 | | | | | | 932.4 | 918.4 | 1848.8 | | | | 162.6 | | 2115.4 | | 856.2 | 932.5 | 918.2 | 1848.7 | 2278 | | 36 | _ | | | _ | 857.4 | 933.2 | 917.1 | 1850.4 | | | | | | | | | | | | | CNB = Standard sample Table 6 XPS and XAES data for aerated samples | | | | , , , , , , , , , , , , , , , , , , , | | | atou saint | | | | | |--------|-------|-------|---|----------|----------|-------------|---------------------|-------|--------|----------| | Sample | 018 | S2p | S2p | SKLL | SKLL | NE2p 3/2 | Cu2p _{3/2} | O1 LW | Qu | s | | | B.E. | B.E. | B.E. | K.E. | K.E. | B.E. | 8.E. | K.E. | AP | AP | | | (eV) | | | (1) | (2) | (1) | (2) | | | | | <u> </u> | | 2 | 531.8 | 161.7 | 188.4 | 2115.8 | - | 856.0 | 932.8 | 916.6 | 1840.2 | 2277 | | | 531.6 | _ | 168.9 | _ | 2108.0 | 856.0 | 933.4 | 915.6 | 1849.0 | 2276 | | 4 | 531.6 | 1621 | 166.8 | 2115.4 | 2107.8 | 856.0 | 932.4 | 916.4 | 1848.8 | 2277 | | 6 | 531.6 | 162.7 | 168.8 | 2113.8 | 2107.4 | 85A.2 | 932.4 | 916.4 | 1848.8 | 2276 | | | 532.0 | 1826 | | 2115.4 | <u> </u> | 856.4 | 932.4 | 916.6 | 1848.5 | 2278 | | 8 | 531.8 | 1826 | 168.6 | 2115.2 | 2107.5 | 856.2 | 932.4 | 916.6 | 1849.0 | 2277 | | | 531.8 | 182.6 | 168.8 | 2115.0 | | 856.2 | 932.4 | 916.4 | 1848.8 | 2271 | | 16 | 531.8 | 162.2 | 189.2 | 2115.6 | 2107.2 | 656.2 | 932.4 | 916.8 | 1849.2 | 227 | | | 531.8 | 162.0 | | 2115.6 | | 856.2 | 932.4 | 916.6 | 1849.0 | 2277 | | 10 | 531.8 | 162.6 | | 2115.2 | _ | 858.8 | 933.2 | 917.4 | 1850.6 | 2277 | | | 531.8 | 163.0 | | 2114.5 | _ | 856.4 | 932.4 | 917.6 | 1850.0 | 2277 | | 12 | 530.8 | 162.0 | | 2115.0 | | | 932.8 | 918.6 | 1851.2 | 2278 | | | 530.8 | 162.4 | | <u> </u> | | 855.8 | 932.4 | 916.4 | 1548.8 | | | 14 | 531.8 | 1624 | _ | 2115.6 | _ | 856.6 | 932.8 | 916.2 | 1849.0 | 2271 | | | 531.8 | 1624 | | 2116.0 | | 855.6 | 932.8 | 916.6 | 1849.2 | 2276 | | | | | | | | | | | | | Table 7 Surface compositions of deaerated samples (in atomic %) | Sample | Cu | Ni | s | а | Ca | N | 0 | Mg | Na | |--------|------|------|-------------|----------|------|-----|------|-----|----------| | | 23.5 | 3.2 | 1.2 | 0.8 | 3.1 | 3.7 | 60.2 | 1.0 | 3.3 | | 20 | 28.6 | 7.3 | 1.3 | 5.0 | | | 57.0 | 0.8 | <u> </u> | | ~~ | 26.4 | 15.0 | | 1.3 | — | _ | 57.3 | | _ | | 22 | 38.8 | 8.3 | 0.7 | 1.1 | 0.8 | 0.8 | 47.3 | 22 | _ | | | 33.0 | 11.9 | | 25 | 0.5 | 1.2 | 48.5 | 1.4 | _ | | 24 | 47.2 | 7.8 | <u> </u> | 1.0 | - | 3.0 | 41.0 | _ | ···- | | | 13.8 | 13.1 | 4,1 | 2.7 | 6.3 | 21 | 57.0 | | | | 26 | 39.2 | 13.0 | | 3.4 | | 2.2 | 50.5 | 0.7 | 1.0 | | 30 | 26.0 | 10 | | | | 1.0 | 71.5 | _ | 0.5 | | 30 | 25.6 | 1.0 | | <u> </u> | | | 73.2 | | 0.2 | | 32 | 26.6 | 25 | 2.2 | 0.8 | 0.9 | 7.8 | 54.8 | 1.2 | 1.2 | | JE | 49.8 | G 9 | | — | 0.9 | 0.8 | 45.2 | 0.5 | 0.8 | | 34 | 27.3 | 5.0 | 30 | | 0.5 | 4.1 | 57.5 | 1.3 | 1.3 | | | 19.2 | 0.3 | | | 11.1 | 29 | 63.1 | | 3.3 | | 36 | 32.5 | 7.5 | _ | | 6.3 | 1.2 | 53.3 | 1.3 | 3.5 | | | 129 | 0.4 | | — | 9.7 | 0.8 | 75.0 | 1.2 | 0.8 | Table 8 Surface compositions of aerated samples (in atomic %) | | i i | | | į | | 1 | 1 | |--------|------|------|-----|--------------|-------------|-----|------| | Sample | Qu | Ni | s | а | Ca | N | 0 | | 2 | 13.0 | 4.0 | 30 | 4.5 | 7.5 | 3.0 | 65 | | | 4.2 | 2.0 | | 21 | 15.8 | 29 | 73 | | 4 | 21.8 | 7.4 | 4.1 | 0.3 | 0.6 | 1.0 | 85 | | 6 | 24.0 | 11.8 | | 34 | | 20 | 58.5 | | | 34.0 | 10.2 | _ | 3.2 | _ | | 52.4 | | 8 | 18.2 | 122 | 4.4 | | 0.5 | 1.5 | 63.5 | | | 41.4 | 7.4 | 1.8 | - | | | 49.4 | | 16 | 24.3 | 7.5 | | | | | 66.2 | | | 31.5 | 7.0 | 3.6 | | | | 57.8 | | 10 | 23.0 | 6.0 | _ | | 1.5 | | 69.5 | | | 47.9 | 11.2 | 3.5 | _ | _ | 24 | 34.9 | | 12 | 43.7 | | 6.1 | | | | 50.1 | | | 35.6 | 11 3 | | Ī — | - | | 53.0 | | 14 | 32.6 | 2.6 | | | | | 53.3 | | . • | 19.4 | 3.4 | | | 9.7 | | 65.5 | Table 9 A. Electron microprobe analyses of Cu-S minerals | Sampl | e | | W | eight pe | rcent | | | |-------|--------|-------|-------|----------|--------|-------|--------| | Numbe | r Cu | Ní | Fe | Mn | s | Cl | Total | | 14-A | 79.392 | 0.301 | 0.000 | 0.000 | 20.196 | 0.015 | 99.90 | | 14-8 | 77.808 | 2.019 | 0.215 | 0.042 | 19.887 | 0.103 | 100.07 | | 14-C | 78.526 | 0.271 | 0.095 | 0.000 | 19.821 | 0.028 | 98.74 | | 30-A | 77.619 | 0.417 | 0.038 | 0.029 | 20.760 | 0.000 | 98.86 | | 30-B | 79.945 | 0.120 | 0.000 | 0.001 | 20.437 | 0.043 | 100.55 | | 30-C | 78.913 | 0.118 | 0.000 | 0.000 | 20.649 | 0.028 | 99.71 | | 30-D | 75.581 | 4.611 | 0.622 | 0.083 | 20.652 | 0.117 | 101.67 | | 30-E | 79.683 | 0.426 | 0.085 | 0.000 | 19.821 | 0.081 | 100.10 | | 30-F | 77.815 | 0.660 | 0.166 | 0.024 | 19.923 | 0.003 | 98.59 | | 32-A | 78.728 | 0.193 | 0.024 | 0.029 | 19.056 | 0.000 | 98.04 | | 32-B | 79.386 | 0.504 | 0.180 | 0.000 | 19.809 | 0.028 | 99.91 | | 32-C | 80.142 | 0.053 | 0.047 | 0.001 | 20,576 | 0.003 | 100.82 | | 32-D | 79.457 | 0.178 | 0.053 | 0.000 | 20.008 | 0.005 | 99.70 | B. Analysis
recalculated on the basis of 1 S | Sample | | | | | Sum of | |--------|-------|-------|-------|-------|---------| | Number | Ca | Ni | Fe | Ħn | Cations | | 14-A | 1.984 | 0.008 | 0.000 | 0.000 | 1.992 | | 14-8 | 1.974 | 0.055 | 0.006 | 0.001 | 2.036 | | 14-C | 2.000 | 0.007 | 0.003 | 0.000 | 2.010 | | 30-A | 1.687 | 0.011 | 0.001 | 0.001 | 1.900 | | 30-B | 1.974 | 0.003 | 0.000 | 0.000 | 1.977 | | 30-C | 1.928 | 0.003 | 0.000 | 0.000 | 1.931 | | 30-D | 1.847 | 0.122 | 0.017 | 0.002 | 1.988 | | 30-E | 2.029 | 0.012 | 0.002 | 0.000 | 2.043 | | 30-F | 1.971 | 0.018 | 0.005 | 0.001 | 2.000 | | 32-A | 2.080 | 0.006 | 0.001 | 0.000 | 2.087 | | 32-8 | 2.020 | 0.014 | 0.005 | 0.000 | 2.039 | | 32-C | 1.965 | 0.001 | 0.001 | 0.000 | 1.967 | | 32-D | 2.004 | 0.005 | 0.002 | 0.002 | 2.013 | Table 11 Thermodynamic data used in calculations of EhpH diagrams and activity diagrams. | Phase | Name | Gr
ka (50) | | |-------------------------------|------------------|--------------------|--| | Cu | native copper | <u>ki/mol</u>
0 | | | Cu ₂ O | cuprite | -146.0 | | | വർ | tenorite | -125.9 | | | CuS | covellite | - 53.6 | | | Cu ₂ S | chalcocite | - 86.2 | | | H ₂ Ó | water | -237.1 | | | | sulfide | + 85.8 | | | HS T | bisulfide | + 12.1 | | | H ₂ S ₂ | hydrogen sulfide | - 27.8 | | | SÕ ₄ 2- | sulfate | -744.5 | | | H ⁺ | | 0 | | ¹ Compiled by Woods and Garrels (1986) Table 10 A. Electron Microprobe Analyses of Ni-rich Cu-S phases | Sample | | | | Weight | Percent | | | |--------------|--------|--------|-------|--------|---------|-------|-------| | Number | Cu | Ni | Fe | Mn | S | C1 | Total | | 14-D | 42.532 | 27.245 | 0.328 | 0.018 | 20.463 | 0.435 | 91.02 | | 14-E | 33.123 | 31.181 | 0.776 | 0.116 | 16.545 | 0.468 | 82.21 | | 30-G | 57.202 | 16.938 | 0.574 | 0.067 | 20.656 | 0.252 | 95.69 | | 30 ~H | 62.587 | 14.536 | 0.910 | 0.061 | 19.801 | 0.937 | 98.83 | | 32-E | 70.056 | 8.016 | 0.474 | 0.024 | 20.215 | 0.215 | 99.00 | | 32~F | 60.849 | 16.157 | 2.227 | 0.292 | 9.052 | 0.357 | 88.94 | | 32~G | 47.947 | 19.777 | 2.382 | 0.337 | 17.497 | 0.263 | 88.20 | B. Mol fraction of the elements | Sample
Number | Cu | Ni | Fe | Kn | s | Cl | |------------------|-------|-------|-------|-------|-------|-------| | 14-D | 0.374 | 0.259 | 0.003 | 0.000 | 0.356 | 0.007 | | 14~E | 0.326 | 0.332 | 0.009 | 0.001 | 0.323 | 0.008 | | 30-G | 0.486 | 0.156 | 0.006 | 0.001 | 0.348 | 0.004 | | 30-H | 0.520 | 0.131 | 0.009 | 0.001 | 0.326 | 0.014 | | 32-E | 0.585 | 0.072 | 0.004 | 0.002 | 0,334 | 0.003 | | 32-F | 0.610 | 0.175 | 0.025 | 0.003 | 0.180 | 0.006 | | 32-G | 0.446 | 0.199 | 0.025 | 0.004 | 0.322 | 0.004 | FIGURE 1 - Energy dispersive X-ray analysis of 90Cu-10Ni specimens prior to being placed in experimental solutions. (A) magnification = 6,100X (B) Figure 2. (A) SEM photomicrograph and (B) $\pm DX$ analysis-lepispherical masses-paratacamite crystals. (A) magnification = 4300X Figure %, %A) SEM photomicrograph and %B) EDX analysis of cubic cuprite crystals. (A) magnification = 1250X (B) Figure 4: (A) SEM photomicrograph and (B) EDX analysis of octahedral cuprite crystals. (A) magnification = 6100X Figure 5. (A) SEM photomicrograph and (B) EDX analysis of tabular to dipyramidal pseudo-hexagonal phase. (B) Figure 6 . (A) SEM photomicrograph (B) EDX analysis of chalcocite occurring as platy elongate crystal with serrated edges. (A) magnification = 5000X (B) Figure 7. (A) SEM photomicrograph and (B) EDX analysis of platy, porous Cu, Ni, S and Fe rich layer. (A) magnification = 1700X (B) Figure 8. (A) SEM photomicrograph and (B)EDX analysis of irregularly shaped masses of Cu_2S doped with Ni and minor amounts of Fe. FIGURE 9 - Two-dimensional chemical state plot of S-containing standards and experimental data collected on corroded 90Cu-10Ni wafers. FIGURE 10A - Orientation diagram for ion-etching profile of sample 6 (shown in Figure 10B). FIGURE 10B - XPS ion-etching profile of sample 6 showing depth dependence of elemental distribution. Points 1 and 2 are respectively, the upper and lower surfaces of the corrosion film and point 3 is the upper surface of the Cu-Ni wafer. Figure 1118 Figure 11A Pigure 11C # A COLOR WEST-NEST NICKOT SZ NO. Figure 11b ## Figure Captions for Figure 11 - A. Back scatter electron image of cross-section of corrosion film found on sample 32. Cu-Ni wafer is seen to the upper left and the outside edge of the corrosion film is to the lower right. The black strip cutting diagonally across the image is an area where the corrosion film separated from the wafer, and is mainly epoxy. - B. X-ray element map of region shown in Figure 11A. The map indicates the distribution of Cu. The light region in the lower right contains the highest concentration of copper in the corrosion film. - C. X-ray element map of region shown in Figure 11A. The map indicates the distribution of S. S is homogenously distributed over the region pictured. - D. X-ray element map of region shown in Figure 11A. The map indicates the distribution of Ni. Ni is virtually absent from the region in the lower right. - For Figures 11B, 11C, and 11D the greater the density of white dots, the higher the concentration of the indicated element. FIGURE 12 - Plot of the magnitude of the change in pH observed in the experimental solutions versus the initial dissolved sulfide content of those solutions. FIGURE 13 - Eh-pH diagram of the aqueous sulfur species showing the final Eh-pH values of the experimental solutions. Stability boundaries are drawn assuming equal activities of the species. FIGURE 14 - Activity diagram for copper carbonate and chloride minerals likely to occur in the experimental solutions containing high levels of dissolved oxygen and/or low levels of dissolved sulfide. Parameters graphed are the logarithm of the activity product of hydrogen and chloride ion versus the logarithm of the pressure of CO2 gas. The dot shows the composition of the aerated solutions and the square that of the deaerated and partially deaerated solutions. Log PCO2 of the latter solutions is estimated. FIGURE 15 - Activity diagram for copper carbonate and sulfate minerals likely to occur in the experimental solutions containing high levels of dissolved oxygen and/or low levels of dissolved sulfide. Parameters graphed are the logarithm of the activity product of hydrogen and sulfate ion versus the logarithm of the pressure of CO2 gas. The dot shows the composition of the aerated solutions and the square that of the deaerated and partially deaerated solutions. Log PCO2 of the latter solutions is estimated. Figure 16. Eh - pH diagram of copper oxide, chloride, and sulfides. The diagram was constructed for 25°C and 1 bar. To construct this and the following two diagrams, the reactions occurring at the phase boundaries were written involving the dominant sulfur species for those Eh-pH conditions. The solid and dashed boundaries were drawn assuming the activity of the aqueous sulfur species to be 10^{-2} and 10^{-4} mol/L, respectively, and the activity of the cupric ion to be 10^{-6} . Final and initial solution compositions are plotted with different symbols and the oxygen contents of the initial solutions are indicated. Figure 17. Eh-pH diagram of common copper corrosion products at 25°C and 1 bar. Phase boundaries are drawn assuming activities of the dissolved sulfur species and cupric ion to be $10^{-3}\text{and}\ 10^{-6}$, respectively. The compositions of the initial experimental solutions are plotted. Figure 18. Eh-pH diagram of common copper corrosion products at 25°C and 1 bar. Phase boundaries are drawn assuming activities of the dissolved sulfur species and cupric ion to be 10⁻³ and 10⁻⁶, respectively. The compositions of the final experimental solutions are plotted.